Chebyshev systems and zeros of a function on a convex curve
نویسنده
چکیده
The classical Hurwitz theorem says that if n first “harmonics” (2n+1 Fourier coefficients) of a continuous function f(x) on the unit circle are zero, then f(x) changes sign at least 2n + 1 times. We show that similar facts and its converse hold for any function that are orthogonal to a Chebyshev system. These theorems can be extended for convex curves in d-dimensional Euclidean space. Namely, if a function on a curve is orthogonal to the space of n-degree polynomials, then the function has at least nd+1 zeros. This bound is sharp and is attained for curves on which the space of polynomials forms classical polynomial and trigonometric Chebyshev systems. We can regard the theorem of zeros as a generalization of the four-vertex theorem. There exists a discrete analog of the theorem of zeros for convex polygonal lines which yields a discrete version of the four-vertex theorem.
منابع مشابه
Functionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملUsing Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions
Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...
متن کاملFurther Observations on Blocking Zeros in Linear Muitivariabie systems (RESEARCH NOTE).
While attempting to clarify the confusion concerning the conceptualization of "blocking zeros" in state space in the recent literature, some new observations are made on the relationship between pole-zero cancellation and transmission blocking. An important distinction between uncontrollable and unobservable eigenvalue s is pointed out; and it is argued that the description of a Blocking Zero, ...
متن کاملOn closed form calculation of line spectral frequencies (LSF)
The mathematical theory of closed form functions for calculating LSFs on the basis of generating functions is presented. Exploiting recurrence relationships in the series expansion of Chebyshev polynomials of the first kind makes it possible to bootstrap iterative LSF-search from a set of characteristic polynomial zeros. The theoretical analysis is based on decomposition of sequences into symme...
متن کامل0 On zeros of polynomials orthogonal over a convex domain ∗ †
We establish a discrepancy theorem for signed measures, with a given positive part, which are supported on an arbitrary convex curve. As a main application, we obtain a result concerning the distribution of zeros of polynomials orthogonal on a convex domain.
متن کامل